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Abstract 

The Fast Fourier Transform (FFT) plays a key role in many areas of computational science 
and engineering. Although most one-dimensional FFT problems can be solved entirely in main 
memory, some important classes of applications require out-of-core techniques. For these, use of 
parallel I/O systems can improve performance considerably. This paper shows how to perform 
one-dimensional FFTs using a parallel disk system with independent disk accesses. We present 
both analytical and experimental results for performing out-of-core FFTs in two ways: using 
traditional virtual memory with demand paging, and using a provably asymptotically optimal 
algorithm for the Parallel Disk Model (PDM) of Vitter and Shriver. When run on a DEC 2100 
server with a large memory and eight parallel disks, the optimal algorithm for the PDM runs 
up to 144.7 times faster than in-core methods under demand paging. Moreover, even including 
I/O costs, the normalized times for the optimal PDM algorithm are competitive, or better than, 
those for in-core methods even when they run entirely in memory. 
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1    Introduction 

Fourier analysis plays a pivotal role in many branches of science and engineering. The Fourier 
transform's input is an N-vector of complex numbers, representing some discretized function. The 
Fourier representation of this function is a sum of N weighted sine and cosine functions with 
specific frequencies. Computing the coefficients of the constituent functions yields a great deal of 
information about the function. Well-known Fast Fourier Transform (FFT) techniques accomplish 
the computation in 0(iVlg JV) operations. 

Since the modern discovery of the FFT by Cooley and Tukey in 1965 [CT65], a profusion of FFT 
methods have been developed, primarily to optimize it for different types of computer architectures 
such as vector and parallel machines (e.g., see Van Loan [Van92]). The work we present here 
continues in that vein, looking at ways of organizing an FFT computation to take advantage of 
parallel I/O systems. Of course, such an endeavor is useful only if the input vector is too large to 
fit in the main memory of a computer; in most uses of the FFT, the input vector will fit in core. 

Some critical applications require extremely large one-dimensional FFTs, particularly when the 
subject function exhibits critical phenomena at vastly different time scales and high resolution is 
required. One such application is seismic analysis [Cla85], where an out-of-core one-dimensional 
FFT is necessary (as part of a higher dimensional FFT) even when the computer memory has 
16 gigabytes of available RAM [Rut96]. Another application is in the area of radio astronomy. 
The High-Speed Data Acquisition and Very Large FFTs Project at Caltech1 uses FFTs to sup- 
port searching for fast (millisecond period) pulsars. The project currently requires FFTs with 10 
gigapoints, and it desires FFTs with up to 64 gigapoints. Yet another application is for integer 
multiplication of very large numbers [CF94], which is a key component in the most modern methods 
of searching for Mersenne prime numbers. FFTs are used in many ways to manipulate data sets, 
such as convolution/deconvolution, correlation/auto-correlation, filtering, and power spectrum es- 
timation [PFTV88]. Any time the data set is very large and accuracy is essential, very large FFTs 
are required. 

The contribution of the present paper is to present an out-of-core FFT algorithm that exploits 
parallel I/O and to assess its performance. The algorithm is a variant of one that was sketched by 
Vitter and Shriver [VS94], and which achieves the lower bound on complexity proven by Aggarwal 
and Vitter [AV88]. In particular, we show how efficient out-of-core permutation routines can be used 
throughout the FFT computation. We assess performance by comparison with demand paging; we 
show analytically and experimentally that well-known in-core FFT algorithms run slowly once the 
data set size exceeds available in-core memory. Using only a single-disk system, we observe that 
our out-of-core method runs over 46 times faster than demand paging; with eight disks we observe 
up to two orders of magnitude improvement using our technique. 

The remainder of this paper is organized as follows. Section 2 summarizes some FFT methods 
for in-core computation, and Section 3 discusses published out-of-core FFT methods for single-disk 
systems. Section 4 demonstrates why conventional demand-paged in-core FFT algorithms perform 
badly when the problem size exceeds the physical memory. In Section 5, we define the Parallel 
Disk Model (PDM). Section 6 describes our out-of-core algorithm. Section 7 presents and analyzes 
running times for our FFT implementation on two different DEC Alpha-based uniprocessor systems. 
Finally, we summarize in Section 8. 

1 See http: //www. cacr. caltech. edu/SI0/APPL/phy02.html. 



2    In-core FFTs 

This section reviews Fourier transforms and outlines some well-known FFT methods for in-core 
computation. For further background on the FFT, see any of the texts [CLR90, Nus82, Van92]. 

Discrete Fourier transforms 

Fourier transforms are based on complex roots of unity. The principal Nth root of unity is a 
complex number LON = e27"/7V, where i = \f-i. For any real number u, elu = COS(M) + i sin(w). 

Given a vector a = (a0, «l, • • ■, ajv-i), where TV is a power of 2, the Discrete Fourier Transform 
(DFT) is a vector y = (y0, j/i,..., t/jv-i) for which 

N-l 

yk=Y,aJuN foik = 0,1,...,N-l. (1) 
3=0 

We also write y = DFTv(a). 

Fast Fourier Transforms 

Viewed merely as a linear system, ©(JV2) time is needed to compute vector y. The well-known Fast 
Fourier Transform technique requires only 0(iVlg jV) time, as follows. Splitting the summation in 
equation (1) into its odd- and even-indexed terms, we have 

JV/2-1 JV/2-1 

j=o i=o 

Each of these sums is itself a DFT of a vector of length JV/2. When 0 < k < JV/2, it is easy to 
see how to combine the results of these smaller DFTs. When JV/2 < k < JV, it is easy to show 

that ufy2 = wjvyl^2^ and UN ~ -^AT
A/2

- Hence, we can compute y = DFTjv(a) by the following 
recursive method: 

1. Split a into aeven = {a0,a2,.. -,ajv-2) and aodd = (ai,a3,.. .,ajv-i). 

2. Recursively compute t/even = DFT^K^11) and yodd = DFT^/2(aodd). 

3. For k = 0,1,..., JV/2 - 1, compute yk = yf™ + uk
Nyf

d and yk+N/2 = yJT" ~ "NVI™- The 
factor cjpj is often referred to as a twiddle factor. 

By fully unrolling the recursion, we can view the FFT computation as Figure 1 shows. First, 
the input vector undergoes a bit-reversal permutation, and then a butterfly graph of lg JV stages is 
computed. A bit-reversal permutation is a bijection in which the element whose index k in binary is 
fejv_i, fcjv-2, • • •, ^o maps to the element whose index in binary is fco, fei,..., &/v_i- In the 5th stage 
of the butterfly graph, elements whose indices are 2s apart (after the bit-reversal permutation) 
participate in a butterfly operation, as described in step 3 above. The butterfly operations in the 
sth stage can be organized into JV/2S groups of 2s operations each. 

FFT algorithms 

When the FFT is computed according to Figure 1 in a straightforward manner—left to right and 
top to bottom—the result is the classic Cooley-Tukey FFT method [CT65]. Several other methods 



s= 1 

Figure 1: The FFT computation after fully unrolling the recursion, shown here with N = 8. Inputs (a0, ai, 
..., ajv-1) enter from the left and first undergo a bit-reversal permutation. Then lg N = 3 stages of butterfly 
operations are performed, and the results (y0, yi,..., 2/JV-I) emerge from the right. This figure is taken from 
[CLR90, p. 796]. 

have been developed to improve performance on vector machines and in memory hierarchies, by 
avoiding the bit-reversal permutation to improve locality of reference. 

Stockham's method [Van92, pp. 49-58] eliminates bit-reversal by permuting the N values before 
each of the lg JV stages of the butterfly network. Its memory requirement, however, is twice that 
of the Cooley-Tukey method. 

Another method, attributed by Bailey [Bai90] to P. Swarztrauber as a variation of an algo- 
rithm by Gentleman and Sande, and also attributed to E. Granger by Brenner [Bre69], splits the 
summation of equation (1) into y/W summations each with y/W terms. (Here we take JV to be a 
power of 4, but the method can be generalized). We split into y/W DFTs rather than two; each 
DFT is comprised of all terms whose indices are congruent modulo y/W. The analog of a butterfly 
operation adds y/W terms (expressible as DFTs) that are computed by recursive calls to problems 
of size y/W. This, Swarztrauber's method, is given by the following steps, which operate in place: 

1. Treating the vector a = (aQ, a1:..., ajv-i) as a y/W x y/W matrix stored in row-major order, 
transpose it so that elements whose original indices are congruent modulo y/W appear in the 
same row. 

2. Compute the DFT of each -y/iV-element row individually. 

jk 3. Scale the resulting matrix by multiplying the entry in row j and column k by uSN. 

4. Transpose the matrix. 

5. Compute the DFT of each \/iV-element row individually. 

6. Transpose the matrix and interpret it once again as an iV-element vector to produce the result 

y = {yo,yi,---,VN-\)- 

This method runs in time Q(NlgN). Reliance on smaller DFTs improves locality in memory 
hierarchies. Experiments reported in Section 4 show this method to be nearly twice as fast as 
others on in-core computations. 



3 Out-of-core FFTs 

Here we briefly survey published out-of-core, single-disk, one-dimensional FFT algorithms. 
Note that an out-of-core method based on Swarztrauber's method is easy when M < A < M2, 

because each v^A-sized DFT fits in memory. This relation between M and A is entirely reasonable 
given contemporary memory sizes and prices. The method does require an out-of-core matrix- 
transpose subroutine to accomplish steps 1, 4, and 6. Bailey recommends an algorithm by Fräser 
[Fra76] for BPC (bit-permute/complement) permutations on one disk, whereas Brenner details a 
transposition algorithm. 

When the problem size just barely exceeds the memory size, Brenner suggests a method devel- 
oped by W. Ryder. This method, which is a specialization of Swarztrauber's method, eliminates 
the first two matrix transpositions. The cost of doing so, however, is that the computation time 
contains a term proportional to N2/M, so that if A > M, the computation time is very high. 

Sweet and Wilson [SW95] use an extension of Swarztrauber's method to perform FFTs even 
when A > M2 on the CM-5 using a Scalable Disk Array (SDA) [TMC92], which appears to the 
programmer as one large disk. The method used by Sweet and Wilson requires an out-of-core 
bit-reversal permutation, and they use Fraser's algorithm. 

The algorithm we present in Section 6 fleshes out the details of a sketch given by Vitter and 
Shriver [VS94]. Because they focus on pebbling the butterfly graph, some essential steps are omitted 
from their description (e.g., the implementation of an efficient out-of-core bit-reverse permutation); 
nevertheless their paper is properly viewed as the basis for our work. 

4 Performance of FFTs with demand paging 

In this section, we show that the in-core FFT methods described earlier perform poorly under 
demand paging once the problem size exceeds the available memory. In particular, we show that 
the number of page faults for the Cooley-Tukey bit-reversal computation is proportional to A 
and that even under the best of conditions the butterfly steps for all methods suffer from a poor 
computation-to-I/O ratio. We substantiate our conclusions with experimental results. 

Analysis of bit reversal 

The following pseudocode expresses an in-place bit-reversal permutation of JV-element array A: 

for j <- 0 to A - 1 
do let f be the lg A"-bit reversal of j 

if i < i' 
then exchange A[j] «-* A[j'] 

Theorem 1 Suppose that the in-place bit-reversal permutation code above is performed under de- 
mand paging with least-recently-used page replacement. Suppose further that there are A = 2™ 
elements in the array, the physical memory can hold M = 2m elements, and each page holds 
B = 2b elements, where n, m, and b are positive integers, A > 2M, and A > 22?. Finally, assume 
that the array A starts at a page boundary and that no pages of A are initially in memory. Then 
the bit-reversal permutation induces at least A/4 page faults. 

Proof: We will show that each element of the set F = {j : 0 < j < A/2 and j is odd} induces a 
page fault. Noting that \F\ = A/4 will then prove the theorem. 



Observe that for each element j £ F, we have j < /, since j has a most significant bit of 0 and 
a least significant bit of 1. Thus, the exchange of A[j] and A[j'] will occur for each j G F. Let F' 
be the set of destination pages referenced when processing members of F. 

We compute which page an element is on as follows. For a given n-bit index into A, the least 
significant b bits give the position on the page, and the most significant n - b bits give the page 
number. Thus, the elements of A that are destined for the same page p have the same value in 
their least significant source indices. 

To determine whether a given reference to A[j'] causes a page fault, we compute the "stack 
distance" for the page containing A[j']. The stack distance [MGST70] of a reference to page p 
is one plus the number of uniquely different pages referenced since the most recent reference to 
page p. A reference to a page causes a page fault if and only if the stack distance of that reference 
exceeds the number of pages that memory can hold, which is exactly M/B. By our assumption 
that no pages of A are initially in memory, we consider the stack distance to the first reference to 
a page of A to be infinite. 

Next we show that for each page p £ F', as we progress through the values j = 0,1,..., N/2 -1, 
the stack distance between successive references to page p is greater than N/2B. Once a reference 
is made to destination page p, another N/B - 1 values of j will be considered before the next 
reference to page p. Of these, N/2B - 1 are in F and thus cause a reference to a unique destination 
page in F'. The page containing index j is also referenced, and this page is not in F', and so at 
least N/2B distinct pages are referenced. As long as no value j 6 F resides on the same page as its 
destination index f, the stack distance between successive references to page p is strictly greater 
than N/2B. But because N > 25, there are at least two pages in the array A, and because A also 
starts at a page boundary, no element in the first N/2 positions resides on the same page as an 
element in the last N/2 positions. Since each element j G F is in the first N/2 positions and maps 
to an element in the last N/2 positions, we conclude that the stack distance is indeed greater than 
N/2B. 

Because N > 2M, we have that N/2B > M/B, and so each reference to a page of F' causes a 
page fault. Since references to pages in F' are induced by source elements in F, we see that each 
time a member of F is processed, a page fault ensues, which completes the proof. ■ 

The proof of Theorem 1 substantially undercounts page faults. A more extensive analysis using 
similar ideas shows that the number of page faults is at least (JV/2 - 2y/W)(l - 2/(N/M)2). 

Analysis of butterfly stages 

All of the FFT methods that we have discussed exhibit relatively good locality when executing 
each butterfly stage. For both Cooley-Tukey and Stockham, each butterfly stage essentially sweeps 
through all the data pages, exactly once, with no more than 2 data pages actively in use at a time. 
Swarztrauber's method exhibits more complex behavior because of the matrix transposes, but its 
constituent butterflies act like the other two methods. The essential point to be noted is that during 
a butterfly stage, each data point is updated once by a complex addition/subtraction (two floating- 
point operations), and half the data points also involve a complex multiplication (six floating-point 
operations). A typical 8 KB data page contains 512 points, and so it entails 2560 floating-point 
operations. The time required to fault in a data page is on the order of 10-2 seconds (most of which 
is independent of the page size), but the time to process that page is about an order of magnitude 
less. Even with much better locality than the bit-reversal computation, demand-paged FFT suffers 
greatly from waiting for I/O to complete. We can mitigate this bottleneck by either increasing the 
size of block fetched per I/O, and/or by prefetching memory blocks.   Our out-of-core technique 



Problem size 

Method 
Cooley-Tukey Stockham Swarztrauber 

Seconds Normalized Seconds Normalized Seconds Normalized 

A/" = 216 1.54558 1.47398 2.15616 2.05627 1.13762 1.08492 

N = 217 3.36112 1.50843 4.64709 2.08556 

JV = 218 7.25278 1.53707 9.85693 2.08896 5.01269 1.06233 

iV = 219 15.5745 1.56347 20.9941 2.10753 

N = 220 35.4236 1.68913 44.6760 2.13032 24.6568 1.17573 

N = 221 75.1581 1.70658 972.035 22.0715 
A- = 222 11591.7 125.621 2022.26 21.9157 443.147 4.80248 

Af = 223 42553.5 220.555 4097.72 21.2385 

N = 224 8746.85 21.7230 2226.75 5.53019 

Table 1: Running times for the three in-core FFT methods on the workstation zayante, with 64 MB of 
memory. For each method and problem size, we show the time in seconds and also the normalized time 
(italics, in microseconds) which is the running time divided by NlgN. 

does both. 

Experimental results 

Here we present running times of the three demand-paged in-core FFT methods (Cooley-Tukey, 
Stockham, and Swarztrauber). They were coded in C, compiled using gcc with 02 optimization, 
and run on a DEC 3000 Alpha-based workstation running Digital UNIX V3.2C. The workstation, 
named zayante, has a clock cycle of 175 MHz, 64 MB of memory, and a 512 MB virtual-address 

space. 
Table 1 gives running times. The Cooley-Tukey and Swarztrauber methods both use 16JV 

bytes; Stockham uses 32JV and so experiences heavy paging one problem size earlier than the 
others. Because our implementation of Swarztrauber's method requires JV to be a power of 4, 
timings for odd powers of 2 are omitted. 

From Table 1, we see the effects of demand paging. By avoiding bit-reversal, the Stockham 
and Swarztrauber methods do not experience the degree of thrashing suffered by Cooley-Tukey. 
(In fact, we did not even run Cooley-Tukey for JV = 224, anticipating a run time of about a day.) 
Swarztrauber's method is notably faster in each case, probably due to its substantially better 
locality in cache. Nevertheless, we shall see in Section 7 that our explicit out-of-core algorithm 
runs faster than Swarztrauber's method on the same system for a problem size of JV = 2   . 

5    The Parallel Disk Model 

This section describes the Parallel Disk Model [VS94].  We shall use this model in Section 6 to 
design an out-of-core FFT algorithm. 

In the Parallel Disk Model, or PDM, N records are stored on D disks X>0,X>i,. ..,2>D_I, with 
N/D records stored on each disk. For our purposes, a record is a complex number comprised of two 
8-byte double-precision floats. The records on each disk are partitioned into blocks of B records 
each.2  Any disk access transfers an entire block of records.   Disk I/O transfers records between 

2 A block might consist of several sectors of a physical device or, in the case of RAID [CGK+88, Gib92, PGK88], 

sectors from several physical devices. 



Vo vx 2?2 V3 vA v5 £>6 v7 

stripe 0 0       1 2      3 4      5 6      7 8      9 10     11 12     13 14     15 

stripe 1 16     17 18     19 20    21 22    23 24    25 26     27 28    29 30    31 

stripe 2 32    33 34    35 36    37 38    39 40    41 42     43 44    45 46    47 

stripe 3 48    49 50    51 52    53 54    55 56    57 58     59 60    61 62    63 

Figure 2:   The layout of N = 64 records in a parallel disk system with 5 = 2 and D - 
represents one block. The number of stripes is N/BD = 4. Numbers indicate record indices. 

8.   Each box 

the disks and an M-record random-access memory. Any set of M records is a memoryload. Each 
parallel I/O operation transfers up to D blocks between the disks and memory, with at most one 
block transferred per disk, for a total of up to BD records transferred. The most general type of 
parallel I/O operation is independent I/O, in which the blocks accessed in a single parallel I/O may 
be at any locations on their respective disks. A more restricted operation is striped I/O, in which 
the blocks accessed in a given operation must be at the same location on each disk. 

We assess an algorithm by the number of parallel I/O operations it requires. While this does 
not account for unavoidable variation in disk-access times, the number of disk accesses can be 
minimized by carefully designed algorithms. 

We place some restrictions on the PDM parameters. We assume that B, D, M, and N are 
exact powers of 2. For convenience, we define b = lg B, m = lg M, and n = lg N. We assume that 
BD < M in order to fully utilize disk bandwidth, and of course we assume that M < N. 

The PDM lays out data on a parallel disk system as shown in Figure 2. A stripe consists of the 
D blocks at the same location on all D disks. A record's index is an n-bit vector x with the least 
significant bit first: x = (x0,*i,...,a;n-i). Record indices vary most rapidly within a block, then 
among disks, and finally among stripes. The most significant n - m bits of an index indicate its 
memoryload number. 

Since each parallel I/O operation accesses at most BD records, any algorithm that must access 
all N records requires Ü{N/BD) parallel I/Os, and so 0{N/BD) parallel I/Os is the analogue of 
linear time in sequential computing. The FFT algorithm we implemented has an I/O complexity of 
0 ( N■ iKimn(BN/B)\   whkh appears to be the analogue of the 0(iVlg JV) bound seen for so many 

\BD      lg(M/ij)      /' 
sequential algorithms on the standard RAM model. 

6    An explicit out-of-core FFT algorithm for the PDM 

By taking full advantage of a parallel disk system, we can get considerably better out-of-core FFT 
performance than we get by using just demand paging. This section presents an explicit out-of-core 
FFT algorithm designed for the PDM. The key idea is to redraw the butterfly graph by inserting 
permutations. We then recognize that bit-reversal and the added permutations belong to the larger 
class of BMMC permutations. We use a prior out-of-core BMMC algorithm to produce an efficient 
out-of-core FFT. 

BMMC permutations on the PDM 

A BMMC (bit-matrix-multiply/complement) permutation on N = 2n elements is specified by an 
nxn characteristic matrix H = (Kj) whose entries are drawn from {0,1} and is nonsingular (i.e., 



invertible) over GF(2).3 The specification also includes a complement vector c = (c0. ci,..., c„_i) of 
length n. Treating each source index x as an n-bit vector, we perform matrix-vector multiplication 
over GF(2) and then form the corresponding n-bit target index z by complementing some subset of 
the resulting bits: z = H x®c. As long as the characteristic matrix H is nonsingular, the mapping 
of source indices to target indices is one-to-one. 

A very efficient algorithm for BMMC permutations on the PDM appears in [CSW94]. This 

algorithm requires at most |^ ( ig(Af/i3) + 2) Parallel ty°s> where 7 is the lower left lg(N/B) x 
lg B submatrix of the characteristic matrix, and the rank is computed over GF(2). (Note that 
because of the dimensions of 7, its rank is at most lgmin(JV/i?,i?).) This number of factors is 
asymptotically optimal and is very close to the best known exact lower bound. 

We shall use two types of BMMC permutations to perform the FFT. Both use a complement 
vector that is all Os. 

Bit-reversal permutation: The characteristic matrix has Is on the antidiagonal and Os else- 
where. The submatrix 7 has as much rank as possible, so that rank 7 = lgmin(.B,iV/J3). 

fe-bit right-rotation: We rotate the bits of each index k bits to the right, wrapping around at 
the rightmost position. The characteristic matrix is formed by taking the identity matrix and 
rotating its columns k positions to the right, and rank7 < min(Ä;,lgi?,lg(iV/i?)). 

Redrawing the butterfly 

Figure 3 shows the structure of our algorithm. This redrawing of the butterfly was devised by 
Snir [Sni81] and is implicitly used in the FFT algorithm of Vitter and Shriver [VS94]. Assume for 
the moment that lgM divides lg JV. As in the Cooley-Tukey method, we start with a bit-reversal 
permutation. Then there are lg N/ lg M superlevels, where each superlevel consists of N/M separate 
"mini-butterflies" followed by a (lg M)-bit right-rotation permutation on the entire array. 

Each mini-butterfly is a butterfly graph on M values, and hence it has depth lgM and a 
sequential running time of O(MlgM). The size M of a mini-butterfly is chosen so that each 
mini-butterfly is computed by reading in a memoryload, computing the mini-butterfly graph, and 
writing out the memoryload. 

Analysis 

This FFT algorithm consists of one bit-reversal permutation followed by lg iV/ lg M superlevels. 

As noted above, the bit-reversal permutation requires at most -g^j ( ST
^M/B)— "*" 2) Paraue^ 

I/Os. Each superlevel requires 2N/BD parallel I/Os to read and write all N/M mini-butterflies 

plus at most % (f^^Af/g^l +2) parallel I/Os to perform the (lgM)-bit rotation permu- 
tation. Since the PDM requires that BD < M and D > 1, we have B < M, and so the lg M 
factor in the numerator drops out. Asymptotically,- the number of parallel I/O operations is 

® \TTD I2!? lgT?M/'g) )' wnich can be shown via simple manipulations to equal the lower bound 
of fi {m hlt^MJB)B)) Proven hy Aggarwal and Vitter [AV88]. 

3Matrix multiplication over GF(2) is like standard matrix multiplication over the reals but with all arithmetic 
performed modulo 2. Equivalently, multiplication is replaced by logical-and, and addition is replaced by exclusive-or. 
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Figure 3: The structure of the out-of-core FFT algorithm for the PDM. After a bit-reversal permutation, 
we perform lg JV/lgM superlevels. Each superlevel consists of N/M mini-butterflies on M values, followed 
by a (lg M)-bit right-rotation permutation on the entire array. 

Handling general values of N and M 

If lgM does not tivite lgJV, then we compensate in the last superlevel. Rather than computing 
mini-butterflies of depth lg M in the last superlevel, we compute mini-butterflies of depth r = 
(lgiV) mod (lgM), which is the number of levels of the full butterfly graph not yet computed. We 
can still read and write memory loads of M values, but now each memoryload in the last superlevel 
consists of MjT mini-butterflies. 

Out-of-core Swarztrauber's method 

If M < N < M2, we could use an explicit out-of-core version of Swarztrauber's method. The 
matrix-transpose steps are BMMC permutations, since exchanging row and column numbers within 
an index is a ((lg JV)/2)-bit rotation permutation. Thus, there would be three BMMC permutations, 
which is just as many as the our algorithm performs when M < N < M2. (Our algorithm has the 
further advantage of working even when N > M2.) 

Moreover, the BMMC permutations that an out-of-core Swarztrauber implementation would 
perform are no faster than those of our algorithm. When done out-of-core, transposing a square 
matrix takes just as long as a bit-reversal permutation or a (lgM)-bit right rotation. The in-core 
portions of an out-of-core Swarztrauber algorithm would also have to perform in-core bit-reversal 
permutations, and so they would be slower than the in-core portions of our algorithm. Consequently, 
we did not implement an explicit out-of-core version of Swarztrauber's method. 

Implementation notes 

This section concludes with some notes on the implementation of our out-of-core FFT algorithm. 
We start with the twiddle factors, which were omitted in the above description. The butterfly 

operations in Figure 3 proceed in lg JV levels from left to right, just as in Figure 1. If we number 



these levels from 1 to lg JV, then all twiddle factors of the Zth level are powers of w2i. We obtain 
these powers of u>2i efficiently by directly computing the exponent of the twiddle factor in super- 
level s, mini-butterfly q within the superlayer (starting from 0, and the range of q depends on 

the superlayer), and the j'th butterfly within a group of butterflies as M$™N)lsM} + JMS. This 
computation is easy to move into loops and avoids expensive sine and cosine calls. 

The ViC* interface [CH96] provides the appearance of the PDM when performing parallel I/O 
operations. The interface is portable, and it is implemented as a set of wrappers on top of an 
existing serial or parallel file system. Here, we used an implementation on top of a traditional 
UNIX file system (UFS), but with multiple disks. 

The BMMC permutation subroutine is taken from the implementation in [CH96]. It calls the 
ViC* interface to perform striped reads and independent writes. It is carefully optimized for both 
in-core computation and I/O. 

Finally, we implemented the FFT algorithm with both synchronous (i.e., blocking) and asyn- 
chronous (non-blocking) I/O calls; the ViC* interface supports both. With asynchronous I/O, as 
we compute the butterflies of the gth memoryload, we simultaneously prefetch the data of the 
(q + l)st memoryload and write behind the computed data of the (q - l)st memoryload. The 
reduced latency does not come for free, however, as we must allocate prefetch and write-behind 
buffers of the same size as the compute buffer. Thus, the effective memory size, i.e., the value of M 
used in the algorithm, is smaller with asynchronous I/O than with synchronous I/O. Because we 
carve memory into three parts and M must be a power of 2, asynchronous I/O reduces the effective 
memory size by a factor of 4. Context switching is an additional cost, as one kernel-level thread 
serves each physical disk and is switched in to handle I/O initiation and completion. Nevertheless, 
we shall see in Section 7 that asynchronous I/O is usually worthwhile. 

7    Performance of the out-of-core FFT algorithm 

This section presents timing results for the out-of-core FFT algorithm on two different DEC Alpha 
platforms. In all cases, block sizes were 216 bytes. 

We start with a direct comparison of our algorithm and the in-core methods running with 
demand paging on zayante. With our algorithm, we used D = 1 disk and varied the memory size 
on zayante from 222 to 225. Using only one disk for the our algorithm makes for a fair comparison 
to demand paging, since there is only one swap disk. Table 2 shows running times with both 
synchronous and asynchronous I/O. In some cases, the asynchronous time exceeds the synchronous 
time because, we believe, having one processor running both threads (main computation and disk 
server) causes context switches during butterfly computations and BMMC permutations. Also, in 
some cases using more memory does not help. Note, however, that at the problem sizes at which the 
in-core algorithms encounter heavy paging—A > 222 for Cooley-Tukey and Swarztrauber—our out- 
of-core algorithm is faster if it has enough memory to work with. (At N = 223, our algorithm with 
32 MB of memory and asynchronous I/O is over 46 times faster than Cooley-Tukey.) Considering 
the overhead due to the ViC* wrappers and UFS calls, it is impressive that our algorithm can run 
faster than even Swarztrauber's method. 

Table 3 shows running times on a different system, named adams, which is a DEC 2100 server 
with two 175-MHz Alpha processors, 320 MB of memory, and eight 2-GB disks for data (so that 
D = 8). It has the same software environment as zayante, but with eight disks, its I/O bandwidth is 
much higher. Compared to the in-core methods in Table 1 even when they run entirely in memory, 
the normalized times (which do include I/O time) are at worst slightly higher and in some cases 
even lower! In one case (JV = 223), the running time on adams is 144.7 times lower than Cooley- 
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Problem 

size 

(points) 

Memory size (bytes) 
222 223 224 225 

sync async sync async sync async sync async 

222 

223 

224 

225 

226 

440.713 
4.77610 

1242.05 
6.43756 

2479.13 
6.15699 

4851.86 
5.78387 

10714.9 
6.14094 

505.569 
5.47896 

1141.72 
5.91755 

2240.50 
5.56434 

4685.00 
5.58496 

11772.7 
6.74719 

414.395 
4.49088 

846.030 
4.38498 

1939.60 
4.81705 

4827.49 
5.75482 

9558.68 
5.47829 

372.099 
4.03251 

779.431 
4.03980 

2221.19 
5.51639 

4573.11 
5.45157 

8911.21 
5.10721 

402.335 
4.36019 

857.528 
4-44458 

1699.27 
4-22018 

3412.08 
4-06752 

7689.57 
4-40706 

403.913 
4.37729 

856.236 
4-43788 

1757.30 
4-36430 

3461.50 
4-12643 

8751.93 
5.01592 

437.361 
4.73977 

931.019 
4-82548 

1785.00 
4-43310 

3539.99 
4.22000 

7495.07 
4.29559 

456.378 
4-94586 

923.335 
4- 78566 

1692.25 
4-20275 

3318.47 
3.95592 

7581.10 
4-34489 

Table 2: Running times for the out-of-core algorithm on zayante with one disk, varying problem and memory 
sizes, and both synchronous and asynchronous I/O. Times are in seconds, and in italics are the normalized 
times (the running time divided by N lg N) in microseconds. 

Problem size 
(points) 

Memory size (bytes) 

2: !6 227 

sync async sync async 

223 340.659 
1.76564 

293.921 
1.52340 

224 799.221 674.864 835.317 714.364 
1.98489 1.67604 2.07453 1.77414 

225 1718.09 1541.35 1712.90 1458.18 
2.04812 1.83743 2.04194 1.73829 

226 3500.04 3092.14 3496.10 3054.42 
2.00595 1.77217 2.00369 1.75055 

227 7232.63 6226.17 7105.92 6252.80 
1.99583 1.71810 1.96086 1.72544 

228 14671.7 12695.0 14243.6 12597.9 
1.95201 1.68902 1.89506 1.67610 

229 30319.8 26431.9 30281.2 26173.6 
I.9474I 1.69770 1.94494 1.68111 

Table 3: Running times for the out-of-core algorithm on adams with 8 disks, varying problem and memory 
sizes, and both synchronous and asynchronous I/O. Times are in seconds, and in italics are the normalized 
times (the running time divided by NlgN) in microseconds. With 227 bytes of memory, a 223-point FFT 
fits in memory, so this timing is omitted. 
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Tukey on zayante. The operating system may choose to run a ready thread on either processor, 
and so disk-server threads do not interfere with butterfly computations as much as on zayante. 
Consequently, on adams it is always faster to use asynchronous I/O than to use synchronous I/O. 

8    Conclusion 

We have examined both analytically and experimentally two classes of methods for computing large 
Fourier transforms. In-core FFT algorithms run slowly when they execute in a demand-paging 
environment. Of the three that we examined, Swarztrauber's method is by far the fastest and has 
the best locality of reference. The explicit out-of-core method that we developed for the PDM is 
asymptotically optimal in this model, and it has good empirical performance. On a DEC 2100 
server with two processors, large memory, and eight data disks, our algorithm's normalized time is 
competitive with in-core methods, even when they run entirely in memory. 

Although it uses both processors, our current DEC 2100 implementation is essentially a unipro- 
cessor implementation. Our own breakdowns of running times on large problems show that com- 
putation time is a bottleneck. We plan to investigate true parallel out-of-core algorithms, using 
parallelized versions of the permutation methods described in this paper. 
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